Istituto Nazionale di Fisica Nucleare - Sezione di Trieste

Viaggio al CERN

https://viaggioalcern.ts.infn.it

Home > Esperimenti > CMS

CMS

CMS (Compact Muon Solenoid) è un esperimento progettato da una collaborazione di 181 istituzioni scientifiche per operare al collider adronico LHC presso i laboratori del CERN di Ginevra. Uno degli obiettivi principali dell'esperimento è la ricerca del bosone di Higgs, ingrediente fondamentale del Modello Standard della unificazione elettrodebole. Secondo questa teoria, tutte le particelle devono le loro masse all'interazione con il campo di Higgs. Per la massa di questa particella, la teoria pone solo un limite superiore di circa 1 TeV (1012 eV), e CMS è stato progettato per permettere di esplorare la regione di massa compresa tra gli attuali limiti sperimentali (poco oltre 100 GeV) fino a questo limite superiore. Secondo alcune indicazioni sperimentali, la massa di questa particella dovrebbe però essere di poco superiore ai limiti attuali ed in questo caso il canale di decadimento privilegiato per la sua scoperta sarebbe quello in due fotoni. Il calorimetro elettromagnetico ad alta risoluzione di CMS è stato progettato proprio per questa ricerca.

Oltre al bosone di Higgs, gli obiettivi dell'esperimento coprono una serie di ricerche fondamentali, come la ricerca di particelle super-simmetriche, lo studio della fisica del quark b, e la violazione della simmetria CP.

CMS è stato quindi progettato per essere un rivelatore "general-purpose", in grado di studiare molti aspetti delle collisioni dei protoni a 14 TeV. È costituito da una struttura cilindrica del peso di 12500 tonnellate lunga 21 metri e con diametro di 16 metri, in fase di assemblaggio all'interno di una cavità sotterranea nei pressi di Cessy, in Francia. È strutturato in sotto-rivelatori che permettono la misura di energia e momento di fotoni, elettroni, muoni ed altri prodotti di collisione. Internamente vi è un sistema di tracciamento con rivelatori al silicio, circondato da un calorimetro elettro-magnetico a cristalli scintillanti. Il calorimetro elettro-magnetico è a sua volta circondato da un calorimetro adronico a campionamento. Tracciatori e calorimetri sono racchiusi all'interno del solenoide di CMS, in grado di generare un campo magnetico di 4 T parallelo all'asse dei fasci. All'esterno di questo solenoide trovano posto i rivelatori di muoni, conglobati nel giogo di ritorno del campo magnetico. I fasci di LHC sono organizzati in pacchetti contenenti circa 1011 protoni che si incrociano ogni 25 ns producendo ogni volta una ventina di collisioni p-p, cioè 800 milioni di collisioni al secondo. I circa 15 milioni di canali di elettronica che costituiscono l'acquisizione dei rivelatori devono essere quindi in grado di sopportare questa altissima frequenza di eventi. I segnali delle particelle vengono analizzati da elettroniche veloci per selezionare solo gli eventi che più probabilmente contengono la fisica di interesse (circa 100 al secondo). Gli eventi che passano questa selezione di verranno successivamente analizzati da centri di calcolo distribuiti in giro per il mondo ma interconnessi ("Grid") per produrre informazioni che permettano di selezionare gli eventi più interessanti (molto rari: per esempio gli eventi in cui ci si aspetta di trovare un bosone di Higgs saranno dell'ordine di uno su 1013, cioè circa uno al giorno) che potrebbero indicare la presenza di nuove particelle o fenomeni fisici.