Istituto Nazionale di Fisica Nucleare - Sezione di Trieste

Viaggio al CERN

https://viaggioalcern.ts.infn.it

Home > Quark Gluon Plasma

Quark Gluon Plasma

La fisica degli ioni pesanti ad energie ultra-relativistiche si propone di estendere il Modello Standard alla comprensione dei sistemi complessi di taglia finita e della loro evoluzione dinamica. Ciò per capire come proprietà macroscopiche e fenomeni collettivi, coinvolgenti molti gradi di libertà, discendano dalle leggi microscopiche della fisica delle particelle elementari. In particolare si vuole sondare l'ambito delle interazioni forti studiando la materia nucleare in condizioni estreme di densità e temperatura.

I fenomeni collettivi di più straordinario impatto, predetti dal Modello Standard, consistono nel manifestarsi di transizioni di fase in campo quantistico in corrispondenza a ben determinate condizioni di densità d'energia. Ciò coinvolge in modo cruciale la nostra attuale comprensione sia della struttura del Modello Standard a basse energie che dell'evoluzione dell'Universo nei primissimi istanti successivi al Big Bang. Questa evoluzione, a partire da uno stato iniziale di estrema densità, avrebbe attraversato una fase di rapida espansione e conseguente raffreddamento, passando attraverso delle serie di transizioni di fase predette dal Modello Standard. Caratteristiche globali del nostro attuale Universo, quali l'asimmetria barionica o la struttura su larga scala, sono connesse con proprietà caratteristiche di tali transizioni di fase.

La comparsa, nel quadro del Modello Standard, di transizioni di fase che coinvolgano campi quantistici elementari, è intrinsecamente connessa alla rottura di simmetrie fondamentali della natura, e dunque all'origine della massa. Generalmente avviene che simmetrie intrinseche della teoria, valide ai più alti valori di densità d'energia, si rompano al di sotto di valori critici della stessa.

Il numero di particelle e la loro massa sono una diretta conseguenza del meccanismo di rottura di una simmetria. Grazie a calcoli di QCD su reticolo si può predire un valore di 170 MeV, corrispondente a una densità d'energia di circa 1 GeV fm-3, per la temperatura critica alla quale la materia dovrebbe effettuare una particolare transizione di fase, ovvero quella verso uno stato deconfinato per quark e gluoni.

Negli urti fra ioni pesanti ottenuti ad LHC tali valori critici sono stati raggiunti e anche superati. Ciò fa della transizione di fase di QCD verso il Quark Gluon Plasma, la sola predetta dal Modello Standard e contemporaneamente accessibile oggi con esperimenti in laboratorio.

I sistemi creati negli urti fra ioni pesanti ultrarelativistici possono dunque dare luogo, in funzione delle caratteristiche dell'urto, alla fase deconfinata detta di plasma di quark e gluoni, che evolvendo dinamicamente in modo molto rapido transisce verso la condizione finale adronica e diluita. La comprensione di questa fase di rapida evoluzione si configura come una formidabile sfida teorica che va ben oltre l'esplorazione della condizione d'equilibrio in QCD. Vi è l'opportunità di sviluppi e sinergie interdisciplinari che coinvolgono concetti di fisica delle particelle elementari, cosmologia, fisica nucleare, termodinamica dell'equilibrio e del non equilibrio, idrodinamica quantistica-relativistica...