Rivelatori "general purpose" ad LHC: ATLAS e CMS

Fabio Cossutti – INFN Trieste 26 Febbraio 2012

CMS CMS Experiment at LHC, CERN Data recorded: Fri Sep 24 02:29:58 2010 CEST Run/Event: 146511 / 504867308

Perchè un collisionatore ?

E=mc² : la massa si può trasformare in energia e viceversa

Collider vs bersaglio fisso: più energia nel centro di massa a parità di energia del fascio

Massa ed energia

1 GeV (Giga ElectronVolt) = 10^9 eV m_{protone} = 0.938 GeV = $1.67262158(31) \times 10^{-27} \text{ Kg}$ m_{elettrone} = 0.0005 GeV = $9.109 \times 10^{-31} \text{ Kg}$

Per dare ad un elettrone l'energia di 1GeV, dovremmo mettere in serie 10⁹= 100000000 pile da 1 Volt !!

Perché vogliamo accelerare le particelle a così alte energie?

L'osservazione del microcosmo

I piu` piccoli dettagli "risolvibili" hanno dimensioni confrontabili con λ della radiazione incidente.

Particelle di alta energia sono gli "esploratori del microcosmo"

Un po' di storia: LEP La macchina a fasci incrociati e+e- a piu' alta energia

- LEP, un anello di 27 Km
- Fasci di elettroni e positroni di oltre 100 GeV
- In funzione dal 1989 al 2000
- Smontato nel 2001 per far posto a LHC : fasci di protoni da 7 TeV

Macchine a fasci incrociati: *Collisori*

- Le macchine moderne per la fisica fondamentale sono Colliders (*Collisori*)
- Si producono collisioni frontali tra elettroni e positroni oppure tra protoni e (anti)protoni o anche elettroni e protoni.

Per protoni ad altissima energia la maggior parte di interazioni sono tra gluoni

Acceleratori Circolari e..... bolletta della luce

Una particella accelerata emette energia per radiazione L'energia persa deve essere compensata dall'acceleratore

Bolletta della luce $\propto \frac{\text{Energia}^4}{\text{massa}^4} \frac{1}{\text{raggio della macchina}}$

- Accelerare elettroni e' molto piu' costoso, hanno una massa 2000 volte inferiore ai protoni
- Raddoppiare l'energia significa aumentare di 16 volte il raggio

LEP : 27 Km di circonferenza !

Componenti principali di un acceleratore

Componenti principali di un acceleratore

Componenti principali di un acceleratore

LHC: la sfida tecnologica

- Filo-singolo-del-cavo-superconduttore:
 6 micron per 20 km
- Intensità di corrente del filo completo: I 2000 ampere
- Massa fredda: nuova tecnica di saldatura per acciaio inossidabile
- Magneti lunghi 15 metri consegnati nel 2006, sistema pronto nel 2008
- Refrigeratori a 4.5 kelvin (già usati da LEP2)
- Energia immagazzinata: 360 Mjoule per fascio (1 Jumbo lanciato a ~ 154 km/h)
- Dimensioni del fascio: la Spagna su una moneta da un Euro
- Fascio focalizzato nelle zone di interazione (esperimenti): 20 micron

LHC cross sections and rates

Sezione d'urto: probabilità che un processo accada in un urto

Decadimenti del bosone di Higgs a LHC

Esperimenti a LHC

	Energia cm TeV	Luminosità cm ⁻² s ⁻¹
LEP e⁺e⁻	0.209	1032
LHC pp	14	I 0 ³⁴
LHC Pb Pb	1312	I 0 ²⁷

Rivelatori di particelle per un esperimento su collisore

- Parte piu` interna: misura non distruttiva delle tracce cariche
 - Particelle ionizzanti, tipicamente in campo magnetico per misurarne il momento, rivelate da camere a fili, dispositivi a semiconduttore, che raccolgono la carica di ionizzazione, precisione spaziale 10/100 micron
- Esternamente: calorimetri elettromagnetici (elettroni e fotoni) e adronici, misura distruttiva dell' energia
 - Particelle "sciamano" in un materiale denso, si raccoglie l'energia prodotta, si misurano anche particelle neutre (fotoni, neutroni)
- Attorno a tutto: tracciare I muoni

• Le particelle cariche meno interagenti

Misura di impulso: i tracciatori

- Come si misura il momento di una particella carica?
 - Usando un campo magnetico e la forza di Lorentz
 - Maggiore il campo magnetico, migliore la misura
 - Ma la quantità di materiale conta: minimizzare il multiplo scattering nella materia

Misura di energia: i calorimetri

Come si misura l'energia di una particella ? Usiamo una grossa quantità di materiale in modo che le particelle vi rilascino tutta l'energia prima di fermarsi

Un esempio reale: Compact Muon Solenoid

Peso: 12500 ton.

Un esempio reale: Compact Muon Solenoid

Combinare più tecniche: la ricostruzione completa di un evento

Due sono meglio di uno solo: ATLAS Più grande è l'energia: ✓ Più grande è il rivelatore: 44m 25m **Tile calorimeters** LAr hadronic end-cap and forward calorimeters **Pixel** detector **Toroid magnets** LAr electromagnetic calorimeters Transition radiation tracker Solenoid magnet Muon chambers 7000 Tons Semiconductor tracker 8

ATLAS: tecniche differenti, struttura analoga

La differenza chiave: il campo magnetico

CMS: solenoide con giogo di ritorno instrumentato (camere a muoni)
B = 4T, L ~ 3m, compatto (basso costo), ottima risoluzione al centro ma povera in avanti, muoni a basso angolo attraversano molto materiale ATLAS: piccolo solenoide per il tracciatore + toroide in aria: ottimo L²B anche in avanti, ma dimensioni giganti ~ 44 m, campo magnetico molto complesso,
Beneficio limitato per il tracciatore

Dalla simulazione al calcolatore alla realtà

Dalla simulazione al calcolatore alla realtà

Perchè avere un rivelatore sofisticato?

- Le potenzialità di misura e scoperta di un apparato dipendono dalla qualità degli oggetti ricostruiti (e, μ, γ, adroni carichi e neutri)
 - Risoluzione: con quale precisione misuro una grandezza?
 - Efficienza: quale frazione delle particelle "vere" che attraversano il mio rivelatore riesco a ricostruire?
 - Purezza: quante volte l'oggetto ricostruito e/o identificato corrisponde ad un oggetto reale?
 - Prontezza: qual'è il tempo necessario a raccogliere un segnale ed essere pronti a raccoglierne il sucessivo?
 - Ogni 25 ns si potrebbe avere una collisione...
- Tutto ciò dipende dalle caratteristiche dell'apparato
 - Numero di canali e loro granularità, ermeticità, quantità di materiale, velocità di risposta al segnale degli elementi sensibili e
 - dell'elettronica di lettura, rumore instrinseco, ...

Ad es. CMS tracker...

L'energia depositata dalle particelle incidenti mediante ionizzazione nel silicio Viene letta dall'elettronica e trasformata in un segnale digitale

Ad es. CMS tracker...

L'energia depositata dalle particelle incidenti mediante ionizzazione nel silicio Viene letta dall'elettronica e trasformata in un segnale digitale

Ad es. CMS tracker...

L'energia depositata dalle particelle incidenti mediante ionizzazione nel silicio Viene letta dall'elettronica e trasformata in un segnale digitale

Ad es. CMS ECAL...

Ad es. CMS ECAL...

I rivelatori: dal principio fisico all'oggetto reale: camere per i muoni

segnale digitale

I rivelatori: dal principio fisico all'oggetto reale: camere per i muoni

Rivelatori a gas: le particelle cariche incidenti ionizzano il gas, la carica viene raccolta dopo il moto in un campo elettrico e trasformata dall'elettronica in segnale digitale

I rivelatori: dal principio fisico all'oggetto reale: camere per i muoni

Ad es. ATLAS MDT e CSC... Monitored drift tubes (MDT) Rivelatori a gas: le particelle cariche incidenti ionizzano il gas, la carica viene raccolta dopo il moto in un campo elettrico e trasformata dall'elettronica in segnale digitale

Dall'oggetto reale all'oggetto di fisica

- Ricostruzione: i segnali dei vari canali di lettura vengono combinati prima a livello di sotto-rivelatore, poi tra rivelatori diversi per ricostruire le particelle che hanno attraversato il rivelatore
 - ► Tracciatore: singolo canale (hit) → cluster di hit → segmento di traccia (con procedure di fit che combinano vari cluster suscettibili di provenire dalla stessa particella)
 - ► Calorimetro: singolo canale (hit) → cluster di hit
 - Combinando un segmento di traccia ed un cluster calorimetrico si può ad esempio ricostruire un elettrone o un pione e distinguerli tra loro dalle caratteristiche misurate
 - Con algoritmi opportuni si possono raggruppare le particelle in getti che sono il prodotto della trasformazione di quark e gluoni prodotti nell'interazione in adroni

Dal rivelatore al calcolatore: selezionare e acquisire i dati

40 milioni di volte al secondo si incontrano i pacchetti dei protoni dai 2 fasci, producendo 20 interazioni sovrapposte. Flusso di dati "vergini": 80 TeraBytes al secondo

- 100.000 CD al secondo!

- Una torre di 100 metri di CD al secondo!

Con algoritmi di preselezione riusciamo a scrivere su disco molto meno, 200 Mbytes/s

Per trovare il bosone di Higgs necessari ~ 3 anni di dati raccolti, a 100 eventi al secondo

= 6 PetaBytes = 6 milioni di GigaBytes

Per il processamento dei dati sono necessari ~ 10 minuti a evento

- 10 min *100*(60*60*24*365*3)/3 = 3153600000 min = 8760000 ore = 365000 giorni = 1000 anni

Varie strategie possibili per l'acquisizione dei dati

Dal principio alla pratica, la costruzione di un evento

Non basta avere un buon rivelatore...

- Simulazione, acquisizione e selezione, ricostruzione, analisi: tutto richiede calcolatori e software
- Alla fine degli anni 70 il CERN possedeva un Cray XMP, la macchina più potente d'Europa
- Oggi la vostra PlayStation o questo notebook sono 2/3 volte più potenti
 - E stanno in uno zaino

... ma bisogna essere alla frontiera del calcolo: la Grid e il modello a Tier

LHC@CERN: Collaborazioni internazionali

Per concludere

- Con ~ 40 pb⁻¹ tra 2009 e 2010 si sono capiti i rivelatori, aggiustate le simulazioni, studiati i processi standard noti, prodotte decine di articoli...
- Nel 2011 LHC con ~5 fb⁻¹: una fluttuazione vista sia da ATLAS che da CMS nella ricerca del bosone di Higgs ha stuzzicato l'appetito
 - Troppo poco per dire che abbiamo scoperto qualcosa
 - Troppo per non cercar di scoprirlo definitivamente nel 2012
- Ci sono molte persone che hanno lavorato per anni, anche 20, per poter arrivare a questo momento
- Voi siete dei privilegiati: l'avete a portata di mano

BACKUP

Cosa ti può combinare una saldatura fatta male...

45

Bad surprise after gamma-ray imaging of the joints: Void is present in most of bus extremities because SnAg flows out during soldering of the joint

Cos' è accaduto a settembre 2009

Gamma rays QBBI.B25R3-M3 before disconnection (QRL connection & QRL lyra sides)

A. Verweij, TE-MPE. 28 April 2009, TE-TM meeting

Capire, riparare, rinforzare le protezioni, aggiornare le procedure operative: 1 anno di ritardo

Cosa ti può combinare una saldatura fatta male...

Bad surprise after gamma-ray imaging of the joints: Void is present in most of bus extremities because SnAg flows out during soldering of the joint

Cos' è accaduto a settembre 2009

