

Scheduled = 15301 Running = 10525

The LHC Computing Grid

Slides mostly by: Dr Ian Bird LCG Project Leader 18 March 2008

Some precursors...

- Computing for HEP means data handling
 - Fixed-target experiments are <u>also</u> at the forefront
- COMPASS
 - >300 TB per year starting 2001 (still running)
 - Is used to investigating new computing technologies
 - One of the first reconstruction programmes entirely written using C++ and modern techniques
 - Raw data recorded at 35-70 MB/s (CMS expect ~200 MB/s)
 - Test of very-large database technologies
 - First user of CASTOR (transparent access of tape data)

Clusters of Inexpensive Processors

Requirements driven

- We started this phase with a simple architecture that enables sharing of storage across CPU servers, that proved stable and has survived from RISC to Quad-core
- Parallel, high throughput
 Sustained price/perf
 improvement ~60% /yr
- Apollo DN10.000s
 1989 20 MIPS/proc
- 1990 SUN, SGI, IBM, HP, DEC, 5 each with its own flavour of Unix
- 1996 the first PC service
- 1998 COMPASS Computing farm
- 2008 dual quad core systems
 - \rightarrow 50K MIPS/chip \rightarrow ~20k cores available == ~20 MSI2K

5 orders of magnitude in 18 years

CERN**IT** Department

The LHC Data Challenge

- The accelerator will be completed in 2008 and run for 10-15 years
- Experiments will produce about
 15 Million Gigabytes of data
 each year (about 20 million CDs!)
- LHC data analysis requires a computing power equivalent to ~100,000 of today's fastest PC processors
- Requires many cooperating computer centres, as CERN can only provide ~20% of the capacity

Department

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it

RC

Summary of Compu	iting Resou	irce Requi	rements	
All experiments - 2008	-	_		
From LCG TDR - June 2005				
	CERN	All Tier-1s	All Tier-2s	Total
CPU (MSPECint2000s)	25	56	61	142
Disk (PetaBytes)	7	31	19	57
Tape (PetaBytes)	18	35		53
CPU	Disk		Таре	
All Tier-2s 43% All Tier-1s 39%	CERN 12% 33% All Tier-1s 55%		All Tier-1s 66%	CERN 34%

Solution: the Grid

 Use the Grid to unite computing resources of particle physics institutes around the world

The **World Wide Web** provides seamless access to information that is stored in many millions of different geographical locations

The **Grid** is an infrastructure that provides seamless access to computing power and data storage capacity distributed over the globe

Department

How does the Grid work?

 It makes multiple computer centres look like a single system to the end-user

RC

CERN IT Department CH-1211 Genève 23

> Switzerland www.cern.ch/it

- Advanced software, called middleware, automatically finds the data the scientist needs, and the computing power to analyse it.
- Middleware balances the load on different resources. It also handles security, accounting, monitoring and much more.

Department

View of the ATLAS detector (under construction)

CERN

Department

LHC Computing Grid project (LCG)

• More than 140 computing centres

RC

CERN IT Department

CH-1211 Genève 23

Switzerland www.cern.ch/it

- 12 large centres for primary data management: CERN (Tier-0) and eleven Tier-1s
- 38 federations of smaller Tier-2 centres
- 35 countries involved

CERN

Department

LCG Service Hierarchy

CERN**IT** Department

Tier-0: the accelerator centre

- Data acquisition & initial processing
- Long-term data safekeeping
- Distribution of data \rightarrow Tier-1 centres

Italy – CNAF (Bologna) Netherlands – NIKHEF/SARA (Amsterdam) Nordic countries – distributed Tier-1 Tier-1: "online" to the data acquisition process → high availability

- Managed Mass Storage –
 → grid-enabled data service
- Data-heavy analysis
- National, regional support

Tier-2: ~140 centres in ~35 countries

- Simulation
- End-user analysis batch and interactive

WLCG Collaboration

The Collaboration

- 4 LHC experiments
- ~140 computing centres
- 12 large centres (Tier-0, Tier-1)
- 38 federations of smaller "Tier-2" centres
- ~35 countries
- Memorandum of Understanding
 - Agreed in October 2005, now being signed
- Resources

RC

CERN IT Department CH-1211 Genève 23

> Switzerland www.cern.ch/it

- Focuses on the needs of the four LHC experiments
- **Commits resources**
 - each October for the coming year
 - 5-year forward look
- Agrees on standards and procedures
- Relies on EGEE and OSG (and other regional efforts)

ru-PNPI-LCG2

101 sites reporting

accounting data

CERN Grid activity

Department

- WLCG ran ~ 44 M jobs in 2007 workload has continued to increase – now at ~ 165k
- Distribution of work across Tier0/Tier1/Tier 2 really illustrates the importance of the grid system
 - Tier 2 contribution is around 50%; > 85% is

CERN

ASGC

CNAF FNAL

NDGF

PIC

RAL

TRIUMF

Tier-2s

CC-IN2P3

FZK-GridKA

NL-LHC-Tier-1

BNL

Impact of the LHC Computing Grid in Europe Department

- LCG has been the driving force for the European multiscience Grid EGEE (Enabling Grids for E-sciencE)
- EGEE is now a global effort, and the largest Grid infrastructure worldwide
- Co-funded by the European Commission (Cost: ~130 M€ over 4 years, funded by EU ~70M€)
- EGEE already used for >100 applications, including...

Bio-informatics

Education, Training

Medical Imaging

The EGEE project

• EGEE

- Started in April 2004, now in second phase with 91 partners in 32 countries
- 3rd phrase (2008-2010) in preparation

- Large-scale, production-quality grid infrastructure for e-Science
- Attracting new resources and users from industry as well as science
- Maintain and further improve "gLite" Grid middleware

egee

Registered Collaborating Projects

25 projects have registered as of September 2007: web page

Collaborating infrastructures

Enabling Grids for E-sciencE

Archeology Astronomy Astrophysics Civil Protection Comp. Chemistry Earth Sciences Finance Fusion Geophysics High Energy Physics Life Sciences Multimedia Material Sciences

21:13:50 UTC

Scheduled = 21539 Running = 25374

>250 sites
48 countries
>50,000 CPUs
>20 PetaBytes
>10,000 users
>150 VOs
>150,000 jobs/day

EGEE-II INFSO-RI-031688

In silico drug discovery

- Diseases such as HIV/AIDS, SARS, Bird Flu etc. are a threat to public health due to world wide exchanges and circulation of persons
- Grids open new perspectives to *in silico* drug discovery
 - Reduced cost and adding an accelerating factor in the search for new drugs

International collaboration is required for:

- Early detection
- Epidemiological watch
- Prevention
- Search for new drugs
- Search for vaccines

Enabling Grids for E-sciencE

http://wisdom.healthgrid.org/

For more information:

www.cern.ch/lcg

www.eu-egee.org

www.gridcafe.org

Thank you for your kind attention!

Ian Bird, CERN, IT Department

RC